Simulations and Machine Learning of Energy Transport

OBJECTIVES

conditions of nanostructures are expected to have impact on the thermal transport

• Dimensionality and surface

thermal conductivity

Synthesis of nanocrystals

• Synthesize nanocrystals that can be hot-pressed into nanocomposites with good thermoelectric performance.

Reduction of lattice thermal conductivity by nanostructuring

 Classical potential development and atomistic simulation of thermal transport in various nanostructures with representative structural features.

• Synthesize nanocrystals from various precursors. Use either Spark Plasma Sintering (SPS) or mechanical hot-pressing to achieve dense nanocomposites.

Achieving high ZT by reduced **KEY RESULTS AND FINDINGS:**

Nanoscale Energy Transport & Conversion Laboratory

Left: XRD spectra showing phase identification and size evolution. Top: synthesized Bi₂Te₃-based nanocrystals showing various shapes and sizes.

• Solution-based growth of Bi₂Te₃ nanocrystals • Control of synthesis conditions to yield Bi₂Te₂ nanocrystals of desired types • Development of classical interatomic potentials for Bi₂Te₃ • Atomistic simulations of Bi₂Te₃ bulk, nanowires, stacked thin-films and nanoporous films, revealing the capability of thermal conductivity reduction due to different nanogeometrical factors.

Machine leanringenabled design and optimization of superlattices. We show that manual search only optimizes to a local minimum of the thermal conductivity, while machine learning can accomplish the global minimum of

Impact

N • The first two-body classical potential for Bi₂Te₃, enabling NTITATIVE efficient atomistic simulations • The first systematic study of thermal transport in Bi₂Te₃based bulk and nanostructures. IMPACT • Synthesis of extremely small Bi₂Te₃ nanocrystals with sizes down to 4 nm.

Applications

- Shape and quality control of the growth of bismuth telluride nanocrystals
- Machine learning-enabled design and optimization of nanomaterials.

• Thermal barrier coatings for turbomachinary

Selected Publications:

- Luo, Yang, Feng, Wang, and Ruan, Nat. Commun. (2020).
- Chowdhurv. Revnolds. Garrett, Feng, Adiga, and Ruan, Nano Energy 69, 104428 (2020).
- Feng, Yao, Wang, Shi, Li, Cao, and Ruan, Phys. Rev. B 95, 195202 (2017).

METHODS